UAi Software

XELA Robotics is currently rolling out its features for the upcoming UAi Software and the UAi App. Our software solution and App will host many features to improve the overall uSkin experience and benefit our users.

For more detailed information on each function, please scroll through the page or navigate with the buttons below.

Basic Tactile Functions

High-Density 3D Sensing

Our tactile sensors can measure 3-axis force, not only pressure, and can be customised for your specific application. This gives robots a human-like sense of touch, allowing them to grasp and manipulate objects precisely.

Data Recording

Active Function

Tactile Data Visualisation

Active Function

Point of Contact

Coming Soon

Details

Tactile Data Visualisation

All measurements are visualised in real-time, either in Windows or in Linux.

Active Function

Point of Contact

Provides the coordinates of all contacts. Different contact areas are separated, and the centre of each contact area is provided.

Coming Soon

Data Recording

Obtain tactile measurements. Our software collects the measurements from all skin patches and prepares them for your application. Currently, we provide the measurements in Windows and Linux, as well as for ROS.

Active Function

Postprocessing Functions

Enhanced Data Collection

Our postprocessing functions such as force calibration improve the overall quality of the tactile data collection. Additionally, magnetic interference and temperature drift can be removed by using our patented technology.

Force Calibration

Active Function - Only for uSPa 44

Magnetic Interference Compensation

Active Function

Temperature Drift Compensation

Active Function

Force Calibration

Active Function (for uSPa 44)

XELA Robotics offers two options for calibration.

The raw measurements are converted into force measurements in Newton. XELA Robotics offers two options for calibration. Both calibration options give the user more control over the grasped object and enable uSkin to measure force in Newton, enabling you, for example, to grasp objects with a predetermined force. 

Standard

Free

For this type of calibration, all uSkin sensors are calibrated with XELA’s universal parameters according to our patented technology. 

This feature is free of charge.

Option 1

Individual

Add On

For this type of calibration, each sensing point is calibrated individually. Slight differences between the sensing points are equalised to guarantee a more uniform response. 

This type of calibration improves the sensor’s accuracy, resulting in a more detailed data collection. 

Option 2

Temperature Drift Compensation

The sensor measurements could slightly drift due to temperature changes. We can remove this temperature drift from the measurements by using temperature reference sensors.

Active Function

Magnetic Interference Compensation

Our sensors can have interference from nearby magnetic fields. Using our patented technology, we remove this interference by using reference measurements.

This function is an optional add-on.

Active Function

Object Information

Tactile Property Recognition

Our tactile property recognition functions will provide the user with a much better understanding of a particular object by revealing the internal and external properties of the specific interaction. 

Detect Object Weight

Coming Soon

Detect Object Texture

Coming Soon

Detect Object Adhesion

Coming Soon

Detect Object Stiffness

Coming Soon

Detect Object Shape

Coming Soon

Detect Object Orientation

Coming Soon

Detect Object Localisation

Coming Soon

Recognise Objects

Coming Soon

Detect Object Geometry

Coming Soon

Details

Detect Object Weight

Detects the weight of an object by slightly lifting the object.

This can be used for quality control and/or for deciding the necessary grasping force.

Coming Soon

Detect Object Texture

Detects the roughness of an object. By slightly moving across the surface of an object, its texture can be detected.

This can be used, for example, for quality control and for appropriately grasping the object. 

Coming Soon

Detect Object Adhesion

Detects the adhesion of an object by slightly rubbing the object.
This provides valuable information for deciding how to grasp the object reliably.

Coming Soon

Detect Object Stiffness

Detect the stiffness of an object by slightly squeezing an object. This can be used, for example, to make sure not to grasp objects too hard to avoid breaking them. 

Coming Soon

Detect Object Shape

In addition to visual information, the local object shape can be obtained through tactile sensing. By repeatedly touching the object, the overall object shape can be obtained, and this information can be used to handle the object correctly. 

Coming Soon

Detect Object Orientation

Detect the orientation of the object within the gripper. The correct orientation of the object is crucial for various tasks, for example, when inserting the object in a hole.

Coming Soon

Detect Object Localisation

Localise objects in the hand. This function reveals the object’s relative position in relation to the gripper.

Coming Soon

Recognise Objects

Recognise objects from a database of previously memorised objects. By slightly touching the object, its tactile features can be recognised, which can be used to recognise objects.

This can be used, for example, to ensure that the grasped object is the correct one. It works in addition to vision, for example, when vision fails due to occlusions or poor light conditions. 

Coming Soon

Detect Object Geometry

Provides various information about the contacts.
For each contact area, we will provide information about the curvature radius of an object and can recognise contact area properties such as edges, corners, and flat surfaces.

Coming Soon

Grasping Abilities

For Robotic Integration

Only the sense of touch can tell you if you are: grasping the object with the right amount of force, if the object is slipping out of your hand, and so on. Our grasping functions are designed for robotic integration to improve the overall interaction with a particular object. 

Grasping with Set Force/Pressure

Active Function

Slip Detection

Coming Soon

Grasp Success Prediction

Coming Soon

Re-grasping Suggestions for Unstable Grasps

Coming Soon

Deformation Detection

Coming Soon

Self Learning

Coming Soon

Details

Grasping with Set Force/Pressure

Grasp objects with predefined force. Set the desired grasping force, and our software ensures that the object is grasped with this force.

Active Function

Slip Detection

Detect the onset of slip. We can detect slip within a few milliseconds, and the gripper can respond to it, for example, by grasping the object slightly stronger.

Coming Soon

Grasp Success Prediction

Predict grasp success. Even before lifting the object, we can distinguish stable from unstable grasps. This allows the opportunity to re-grasp the object in advance and ensure that it will not be slipping out of the hand while transporting it.

Coming Soon

Re-grasping Suggestions for Unstable Grasps

After detecting an unstable grasp, we provide suggestions for how to change the grasp so that it will be more stable. In particular, the object could be grasped stronger, if permissible, or the position of the grasp can be modified.

Coming Soon

Deformation Detection

If the grasp is too firm, the object is deforming. After detecting this, the grip strength can be reduced if so desired.

Coming Soon

Self Learning

By collecting data about grasps, the algorithm automatically improves due to the additional training data.

Coming Soon

All Released Functions

Tactile Data Visualisation

Basic Tactile Functions

Data Recording

Basic Tactile Functions

Temperature Drift Compensation

Postprocessing Function

Magnetic Interference Compensation

Postprocessing Function

Set Force/Pressure

Grasping Abilities

LET'S GET STARTED

Get Your tactile Sensor

If you have any questions, comments, or feedback, please do not hesitate to get in touch with us.
You can reach us by clicking on the "Contact us" button or by sending an email to info@xelarobotics.com.